Exercise 23

Find the limit or show that it does not exist.

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{1+4 x^{6}}}{2-x^{3}}
$$

Solution

Multiply the numerator and denominator by the reciprocal of the highest power of x in the denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{1+4 x^{6}}}{2-x^{3}} & =\lim _{x \rightarrow \infty} \frac{\sqrt{1+4 x^{6}}}{2-x^{3}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}} \sqrt{1+4 x^{6}}}{\frac{1}{x^{3}}\left(2-x^{3}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{6}}\left(1+4 x^{6}\right)}}{\frac{2}{x^{3}}-1} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{6}}+4}}{\frac{2}{x^{3}}-1} \\
& =\frac{\lim _{x \rightarrow \infty} \sqrt{\frac{1}{x^{6}}+4}}{\lim _{x \rightarrow \infty}\left(\frac{2}{x^{3}}-1\right)} \\
& =\frac{\sqrt{\lim _{x \rightarrow \infty}\left(\frac{1}{x^{6}}+4\right)}}{\lim _{x \rightarrow \infty} \frac{2}{x^{3}}-\lim _{x \rightarrow \infty} 1} \\
& =\frac{\sqrt{\lim _{x \rightarrow \infty} \frac{1}{x^{6}}+\lim _{x \rightarrow \infty} 4}}{\lim _{x \rightarrow \infty} \frac{2}{x^{3}}-\lim _{x \rightarrow \infty} 1} \\
& =\frac{\sqrt{0+4}}{0-1} \\
& =-2
\end{aligned}
$$

